放射化学 RADIOCHEMISTRY

In these questions, use the given half lives and approximate values, *i.e.*, $\log_e 2 = 0.70$, 1.0 eV = 1.6 ×10⁻¹⁹ J, and Avogadro's number $N_A = 6.0 \times 10^{23}$ mol⁻¹. The significant figure is 2 digits.

1. ⁹⁰Sr is a radioactive nuclide with a half-life of 30 years (decay constant: 7.4×10^{-10} s⁻¹). It undergoes β^- decay into a daughter nuclide. The daughter nuclide of ⁹⁰Sr also undergoes β^- decay into a stable nuclide with a half-life of 60 hours.

1.0 mg of ⁹⁰Sr in a hydrochloric acid solution is isolated from the daughter nuclide at t = 0. Answer the following questions.

[Radioactive decay] [Radioactive equilibrium] [Separation in radiochemistry]

- (1) Calculate activity [Bq] of 90 Sr in the hydrochloric acid solution at t = 0.
- (2) Show the daughter nuclide of ⁹⁰Sr. And show a coprecipitation reaction to collect the daughter nuclide in precipitation by a reaction formula.
- (3) Calculate total activity [Bq] in the hydrochloric acid solution after 60 years (at t = 60 y).
- 2. A solution containing 5×10³ Bq/mL of a radioactive nuclide with a half-life of 2 minutes was prepared. 0.1 mL of this solution was injected into a rabbit by intravenous injection. 6 minutes later, 1.0 mL of blood was sampled from the rabbit. Then, the activity of the blood sample was determined to be 0.25 Bq. Calculate the total blood volume [mL] of this rabbit.

The radioactive nuclide was uniformly spread over the blood right after the injection, and did not migrate to other tissues.

[Detection and measurement of radioactivity]

[Isotope dilution analysis, Age determination from radioactive decay]

- Calculate the mass (in g) of 5.0 MBq of ¹⁸³Re. The half-life of ¹⁸³Re is 70 days.
 [Radioactive decay]
- 4. The decay mode of ¹⁸³Re (atomic number = 75) is electron capture (EC) decay. Answer the atomic and mass numbers of the decay product of ¹⁸³Re. [Radioactive decay]
- 5. ¹⁴C decays with a half-life of 5700 years. A piece of clay pot excavated at a historical spot contains 9.6 $\times 10^{-2}$ g of ¹²C and 1.4×10^{-14} g of ¹⁴C, respectively. What is the age of this clay pot? The ratio of ¹⁴C : ¹²C in the air is 10^{-12} : 1, which is constant over age.

[Age determination from radioactive decay]

6. 0.3 g of ³H is stored in a glass tube. Calculate the released heat per second [J/s] from the tube. The decay constant of ³H is 1.8×10⁻⁹ s⁻¹, and the average beta-ray energy from ³H is 6.0 keV. In the tube, no exothermic nor endothermic phenomenon occurs other than the radioactive decay of ³H. [Radioactive decay]

End